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Chinese hamster ovary (CHO) cells are the most prevalent host

organism for production of recombinant therapeutic proteins,

including monoclonal antibodies (mAbs). Regulatory guidance

mandates control of the host cell protein (HCP) concentration in

the production process, which remains a primary challenge.

Although HCP concentrations are typically measured by ELISA,

orthogonal proteomic methods are gaining popularity for

identification and quantitation of individual HCP species.

Recent applications of proteomic techniques to characterize

extracellular CHO HCPs include those that have explored the

effects of upstream factors (cell line, viability, process

conditions), characterized specific HCPs likely to co-purify by

mAb interactions, identified HCPs likely to impact drug product

quality, and enabled strategies to limit HCP expression (media

composition, temperature shift, genetic modification) and

maximize clearance (polishing chromatography, wash

additives).
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Introduction
Biopharmaceutical manufacturing includes that of thera-

peutic proteins, of which many are monoclonal antibodies

(mAbs), which are typically expressed in Chinese hamster

ovary (CHO) cells and secreted into the extracellular
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medium. Extracellular host cell proteins (HCPs) com-

prise a heterogeneous mixture of secreted proteins and

intracellular proteins released during cell lysis. These

HCPs exhibit a range of physicochemical properties

and can present clearance challenges during downstream

processing. ICH guideline Q6B, the primary reference for

biopharmaceutical product specifications, states that

HCP levels should be minimized and well controlled

but does not provide exact limits [1]; however, less than

100 ppm is a target commonly used across the industry,

with lower levels generally preferred for commercial

processes. Of the thousands of extracellular HCPs, a small

subset pose specific challenges, including: (1) immuno-

genicity risk [2], (2) activity in vivo, which has been

reported at concentrations as low as 20 ppm [3], and (3)

impact on product quality [4��,5–9].

Enzyme-linked immunosorbent assays (ELISAs) are typ-

ically used for in-process and release testing for HCPs.

ELISAs provide quantitative measurement of total HCP

levels but have several limitations [10], such as preferen-

tial detection of highly immunogenic HCPs and dilution-

dependent non-linearity of some species. Orthogonal

proteomic methods enable identification and quantitation

of individual HCP species, with several merits and lim-

itations [11,12]. Additional information regarding differ-

ent analytical methods used for evaluation of HCP spe-

cies is available in review articles that address the use of

ELISAs [10,11], two-dimensional electrophoresis [11],

and mass spectrometry-based methods [11,12]. Recent

publications propose application of these proteomic

methods for risk-based approaches to HCP content man-

agement by considering factors such as HCP identity,

experience with the product, and level/route of patient

exposure [13], with impact determined by severity,

detectability, and abundance [14].

As the composition and concentration of HCPs in a given

drug product may be influenced by upstream and down-

stream processing conditions, process changes or

manufacturing drift may impact the HCP profile; exam-

ples of upstream conditions that may affect generation of

HCP species are discussed in the next section. Figure 1

illustrates the theoretical impact on a biopharmaceutical

drug product if upstream and downstream process

changes resulted in increased production and co-purifica-

tion of a generic high-risk HCP. In this review, we
www.sciencedirect.com
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Figure 1
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Hypothetical illustration of how modifications to (a) a reference manufacturing process can negatively impact product quality by changing the HCP

profile via (b) upstream process changes and (c) downstream process changes.
highlight recent applications of proteomic methods to

characterize extracellular CHO HCPs across various

upstream processing conditions and identify specific

HCPs posing downstream purification challenges through

strong interactions with mAbs, especially those HCPs

impacting drug product stability. Strategies to limit

upstream HCP expression and maximize the effective-

ness of downstream purification are also discussed.

Upstream
Sequencing of the CHO-K1 [15] and Chinese hamster

[16] genomes has enabled identification of the majority of

the extracellular CHO proteome in clarified cell culture

fluid. Most recently, around 3000 extracellular proteins

have been identified and eight different bioinformatics

tools have been applied in the course of determining

approximately 1000 proteins that are likely secreted by

classical and non-classical pathways [17�]. Isobaric label-

ing [18,19], spectral counting [20��] and normalized spec-

tral abundance factor (NSAF) [17�,21–23] have enabled
www.sciencedirect.com 
relative quantification of extracellular HCPs in culture

supernatants, while MSE (a tandem mass spectrometry

technique alternating high and low collision energy) has

been applied for absolute quantification [24,25]. Recent

efforts have focused on characterization of extracellular

proteome changes for different cell lines, culture viability

and processing conditions, with relevant studies summa-

rized in Table 1.

Proteome similarity across cell lines enables translatable

learnings across different products and laboratories. The

demonstration in 2006 that the intracellular proteome

from CHO cell lysates was similar across three CHO-

K1 DUKX-B11 derived null cell lines (FR4, DP12, DP7)

[26] has been complemented by recent findings from the

same group. This work demonstrated that extracellular

HCP profiles of three strains of null cells derived from

different lineage and grown under different upstream

conditions were similar [20��]. Each cell line was found

to generate approximately 1400 extracellular HCPs, with
Current Opinion in Biotechnology 2018, 53:144–150
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Table 1

Summary of recent upstream proteomic studies of differential protein expression and identification. Abbreviations represent two-

dimensional electrophoresis (2DE), liquid chromatography (LC) and mass spectrometry (MS)

CHO cell line Product Culture Detection method Study explores differences across

Cell line Viability Conditions

[18] K1 Null Shake-flask 2DE, LC–MS/MS Cell age

[20��] DUKX, K1 Null Fed-batch LC–MS/MS, ELISA X X Varieda

[21] GS Rituximab Batch, fed-batch LC–MS/MS X Batch versus fed-batch

[22] DG, DUKX Fc-fusion protein Batch, fed-batch LC–MS/MS X X Batch versus fed-batch

[23] 3 proprietary 2 proprietary mAbs Proprietary, varied LC–MS/MS, ELISA X X Variedb

[24] 2 proprietary 2 proprietary IgG1s Proprietary, varied 2D-LC–MSE, ELISA X

[25] DP-12 Anti-interleukin 8 IgG1 Shake-flask 2D-LC–MSE, ELISA X

[27�] 8 GS IgG4 Shake-flask 2DE, ELISA X

[29�] DG44 IgG1 Shake-flask 2DE, ELISA Media composition

[30] GS Chimeric IgG4 Fed-batch LC–MS/MS, ELISA Temperature shift

a Variable conditions include media composition, nutrient feed and temperature.
b Variable conditions range from minor changes in media composition to substantial modifications of upstream and downstream process.
80% of the top 1000 proteins identified common to all

three cell lines. Despite qualitative similarities, individ-

ual HCP concentrations varied, with phospholipase B-

like 2 (PLBL2) changing nearly 5-fold across the cell

lines. Similar results have been reported by others

[22,23,27�]. For example, although the identities of

92% of the 100 most abundant HCPs were found to be

conserved across two different cell lines, many HCPs

exhibited greater than a 10-fold difference in abundance

[24]. Therefore, similarity in qualitative HCP composi-

tion enhances data utility but quantitative changes main-

tain cell line as an impactful upstream parameter.

Recent proteomic studies have shown that cell culture

viability may impact the composition of HCPs in the

clarified cell culture fluid through the introduction of

intracellular proteins resulting from cell lysis during both

batch and fed-batch culture [21,22]. For example, differ-

ent HCPs were detected in Protein A eluate generated

from early-stage and late-stage batch culture, with 80%

being secreted proteins at five days (98% viability) and

more than 70% being intracellular proteins after seven

days (91% viability) [25]. Conversely, another study

showed conservation of 86% of extracellular HCPs when

the culture viability of a host dropped from over 80% to

less than 10% [20��]. Such divergent findings may be

attributable to differences across studies in harvest day,

cell viability, and clarification methods, which have been

shown to impact the HCP profile [27�].

Although upstream processing conditions have histori-

cally shown limited influence on the HCP profile [28],

these factors have more recently been shown to affect

HCP composition and abundance, with the degree of

change enhanced by increasingly divergent conditions

[23]. Factors such as cultivation duration [18], media

composition [29�], and operating temperature [30] have

all been shown to have a significant impact on a subset of

extracellular HCPs. Additionally, a larger number and
Current Opinion in Biotechnology 2018, 53:144–150 
higher concentrations of HCPs have been reported in fed-

batch culture, when compared to batch culture in three

different experiments [21,22]. The authors attributed this

increase to the corresponding increase in cell density

during extended fed-batch culture. During exponential

growth (day 3) both batch and fed-batch cultures gener-

ated equivalent cell densities. Consequently, more than

80% of the most abundant proteins were common across

different operating modes. Still, a small number of HCPs

were relatively more abundant under fed-batch condi-

tions (e.g. serine protease HTRA1). These six articles

[18,21–23,29�,30] suggest that, as cell culture platforms

continue to evolve and the industry moves towards higher

cell densities and perfusion cell culture, additional

increases in HCP abundance and changes in composition

are possible, particularly if perfusion culture duration

extends beyond the current range of 30–60 days.

Downstream
An important subset of persistent HCP impurities in mAb

downstream processes are retained due to association

with the mAb itself [31,32,33�]. Identification of HCP

impurities in downstream process intermediates

[19,24,25,34��,35,36] and offline measurements of mAb-

–HCP interactions via cross-interaction chromatography

(CIC) [32,33�] have been used to identify the most

difficult-to-remove HCPs. These studies tracked HCPs

through downstream processes [19,24], compared HCPs

present in Protein A eluate [25,34��,35], and identified

HCPs in the final drug substance [36]. HCPs that associ-

ate with different mAbs were identified using CIC

[32,33�]; the binding was further quantified and improved

HCP clearance was achieved by using wash additives to

disrupt the mAb–HCP interactions [33�].

A total of 29 mAbs were analyzed for the presence

of persistent HCPs in eight recent studies

[19,24,25,32,33�,34��,35,36] using different methods, pro-

cess conditions, and assumptions. ‘Persistent’ HCPs were
www.sciencedirect.com
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Figure 2

0

Clus
te

rin

78
 kD

a 
glu

co
se

 re
gu

lat
ed

 p
ro

te
in

Per
ox

ire
do

xin
 1

Glyc
er

ald
eh

yd
e 

3 
ph

os
ph

at
e 

de
hy

dr
og

en
as

e

Pyr
uv

at
e 

kin
as

e

Glut
at

hio
ne

 S
-tr

an
sfe

ra
se

 P

Ser
ine

 p
ro

te
as

e 
HTRA1

Elon
ga

tio
n 

fa
cto

r 2

Hea
t s

ho
ck

 co
gn

at
e 

71
 kD

a 
pr

ot
ein

Pep
tid

yl 
pr

oly
l c

is 
tra

ns
 is

om
er

as
e

Elon
ga

tio
n 

fa
cto

r 1
a1

Pho
sp

ho
gly

ce
ra

te
 ki

na
se

 1

Aldo
se

 re
du

cta
se

 re
lat

ed
 p

ro
te

in 
2

Alph
a-

en
ola

se

Nido
ge

n-
1

Sulf
at

ed
 g

lyc
op

ro
te

in 
1

Vim
en

tin

M
et

all
op

ro
te

ina
se

 in
hib

ito
r 1

T co
m

ple
x p

ro
te

in
Acti

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n 

of
 m

A
bs

 c
on

ta
in

in
g 

sp
ec

ifi
c 

H
C

P

ProA Eluate CIC DS

Current Opinion in Biotechnology

Identification, based on studies using 29 mAbs, of persistent HCP impurities that either associated with the mAb during CIC [32,33�], were

identified in Protein A eluate [19,24,25,34��,35] or were present in final drug substance (DS) [36].
defined as ones that either associated with the mAb

during CIC [32,33�], were identified in Protein A eluate

[19,24,25,34��,35] or were present in final drug substance

[36]. The persistent HCPs for each mAb were compiled

and ranked based on frequency of identification; the

HCPs identified with �20% of mAbs are presented in

Figure 2. Although the findings are skewed by one data

set in which only the HCPs present in all 15 mAb

purifications were included [34��], the most frequent

persistent HCPs were identified by different groups, pro-

cess conditions, and analytical methodologies. Clusterin

was the only HCP that was identified as ‘persistent’ with

all 29 mAbs, while 13 additional HCPs were found in

>50% of mAbs tested; 153 additional HCPs were identi-

fied in <20% of mAbs tested. These findings indicate that

there is a core group of ‘persistent’ HCPs that are likely to

be challenging to remove in the majority of mAb processes.

This analysis also demonstrates that there are many unique

HCP impurities that may be difficult to remove from
www.sciencedirect.com 
specific mAbs but that are not universally problematic,

emphasizing the importance of product-specific studies.

While many of the HCPs discussed above are consistently

challenging, the removal of non-consensus HCPs has also

required significant investments in downstream process

development efforts. The best-publicized example is

PLBL2. While identified in only 14% of the mAbs ana-

lyzed in Figure 2, PLBL2 was found to bind strongly to

IgG4 molecules [37,38], to cause an immunogenic

response in patients and to interfere with CHO ELISA

due to dilutional non-linearity [37,39]. The starting

PLBL2 concentration, the Protein A load ratio and Pro-

tein A wash conditions can influence PLBL2 binding and

clearance from IgG4 molecules [38]; surface plasmon

resonance (SPR) analysis indicated a multivalent binding

mechanism. As discussed in the Drug Substance and

Drug Product section, PLBL2 also negatively impacts

drug product stability [5].
Current Opinion in Biotechnology 2018, 53:144–150
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Drug substance and drug product
In addition to potential immunogenicity risks to patients

[2,39–41], HCP impurities can have direct or indirect

negative effects on drug product stability. Specifically,

proteolytic HCPs such as cathepsins have been found to

cause fragmentation of the mAb itself [6–9] and HCPs

with lipase activity, such as lipoprotein lipase and PLBL2

[4��,5], can cause degradation of polysorbates commonly

used as excipients.

Cathepsin D has been cited by multiple groups as having

a negative impact on drug product stability. At low con-

centrations in formulated bulk it was found to cause mAb

fragmentation and particle formation [7], a decrease in

recombinant therapeutic protein activity [8], and frag-

mentation of an Fc-fusion therapeutic molecule [9]; mAb

fragmentation due to an unidentified acidic protease has

also been found [6]. Although cathepsin D is not fre-

quently identified as ‘persistent’ — it was identified in

only 4% of the mAb processes presented in Figure 2 —

such proteolytic HCPs, if present, can be quite challeng-

ing; a heat inactivation step was found to mitigate the

issue in one case [8]. Another well-known but evidently

benign example of proteolysis is C-terminal lysine cleav-

age of mAbs caused by carboxypeptidase D [42].

Polysorbate 20 or 80 is included in the majority of

biological drug product formulations [43] to increase

shelf-life stability [44]. Polysorbates have many well-

publicized routes of degradation [45], and this list has

been expanded to include hydrolysis by lipoprotein lipase

and PLBL2 [4��,5]; both HCPs have been identified as

difficult to remove from some mAbs [32,35]. The enzy-

matic hydrolysis of polysorbate releases fatty acids, which

can form particles in drug product solutions [5].

Strategies for difficult-to-remove HCPs
Mitigating the effects of problematic HCPs can include

action in one or more of upstream, downstream, and

formulation operations. While upstream research had

traditionally focused on productivity and product attri-

butes, recent work has explored strategies for reducing

HCP content in clarified cell culture fluid. Design of

experiment methodologies have been used to identify

key media additives, including folic acid, thiamine, ribo-

flavin, ascorbic acid, and insulin, to reduce HCP levels

[29�]. A temperature shift has been demonstrated to

reduce HCP species, with mild hypothermic conditions

reducing the number of HCPs detected by 36% [30],

although these process parameters may not always be

effective [20��]. Recently, gene editing technology has

been applied to effectively generate knockout cell lines

with improved product quality, for example, by reduced

polysorbate degradation in lipoprotein lipase knockout

cell lines [4��] or a more than 10-fold increase in the C-

terminal lysine level by elimination of carboxypeptidase

D [42]. Although both of the aforementioned studies
Current Opinion in Biotechnology 2018, 53:144–150 
demonstrated comparable cell growth to that of control

cells, knockout cell lines may be limited in their viability

after reduction of the levels of essential proteins, and

elimination of all problematic HCPs from a single cell line

is likely biologically infeasible.

Downstream strategies for optimizing HCP clearance

would be expected to be effective in a suitably robust

process. Non-affinity chromatographic steps can achieve

excellent resolution of specific HCP impurities [46–49],

and even a process lacking a Protein A capture step can

clear many of the difficult HCP impurities discussed

above [47]. The chromatographic profiles of persistent

HCPs on different stationary phases have been charac-

terized [48] and optimization strategies for non-affinity

chromatographic removal of HCPs have been described

[46,50–52]. These studies demonstrate that for many

challenging HCPs, optimization of polishing steps is a

viable solution, and the inclusion of proteomic methods in

process monitoring may aid in quality control. However, if

the mAb-HCP association is sufficiently strong, non-

affinity polishing steps may not provide chromatographic

resolution.

Enhancements of downstream processes to improve HCP

clearance may require relatively modest additional effort.

Protein A wash buffer optimization to remove challenging

HCPs has been successful for many groups and does not

require development or implementation of an additional

chromatographic step. Wash additives and combinations

of additives to successfully disrupt mAb–HCP interac-

tions identified using CIC methodologies [33�] include

various combinations of NaCl, urea, caprylate, and argi-

nine; these additives improved clearance of persistent

HCPs such as clusterin, peroxiredoxin-1, actin, and

others. Similar findings have been noted for total HCP

removal, rather than specific HCPs [53], and indeed rapid

wash screening methodologies using multiplexed SPR

and ELISA [54,55] can be effective even without the use

of proteomic methods. These high-throughput wash

additive screening methods provide a framework for

optimizing the clearance of both total HCP content

and specific HCP impurities across the Protein A capture

step.

Conclusions
While HCP ELISA remains a critical tool for bioprocess

development, proteomic methods have significantly

increased the understanding of HCP dynamics, including

both production and removal. Proteomic analyses have

enabled identification of the most problematic HCP

impurities, including those that are immunogenic, diffi-

cult to purify, and degrade both product molecules and

excipients. These studies have begun to show the links

among upstream process conditions, downstream HCP

clearance efficiency, and drug product quality. This end-

to-end view of process development will likely continue
www.sciencedirect.com
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to be a focus, particularly as bioprocessing pushes the

limits of process intensification, which may increase the

burden of HCP removal. Additional challenges may arise

as the industry moves further towards continuous bioma-

nufacturing, where factors known to impact HCP compo-

sition, such as age and variability of raw materials, can

have an increased effect compared to traditional batch

processing. The relationship between process parameters

and the thousands of HCPs in bioprocesses remains

highly complex, but recent studies have greatly enhanced

knowledge of these impurities and will be an important

resource for development of future processes.
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46. Kröner F, Hanke AT, Nfor BK, Pinkse MW, Verhaert PD, Ottens M,
Hubbuch J: Analytical characterization of complex
biotechnological feedstocks by pH gradient ion exchange
chromatography for purification process development. J
Chromatogr A 2013, 1311:55-64.

47. Maria S, Joucla G, Garbay B, Dieryck W, Lomenech AM,
Santarelli X, Cabanne C: Purification process of recombinant
monoclonal antibodies with mixed mode chromatography. J
Chromatogr A 2015, 1393:57-64.

48. Levy NE, Valente KN, Lee KH, Lenhoff AM: Host cell protein
impurities in chromatographic polishing steps for monoclonal
antibody purification. Biotechnol Bioeng 2016, 113:1260-1272.

49. Joucla G, Le Senechal C, Begorre M, Garbay B, Santarelli X,
Cabanne C: Cation exchange versus multimodal cation
exchange resins for antibody capture from CHO supernatants:
identification of contaminating host cell proteins by mass
spectrometry. J Chromatogr B 2013, 942:126-133.

50. Hanke AT, Tsintavi E, Ramirez Vazques MDP, van der Wielen LA,
Verhaert PD, Eppink MH, van de Sandt ET, Ottens M: 3D-liquid
chromatography as a complex mixture characterization tool
for knowledge-based downstream process development.
Biotechnol Prog 2016, 32:1283-1291.

51. Nfor BK, Ahamed T, Pinkse MWH, van der Wielen LAM,
Verhaert PDEM, van Dedem GWK, Eppink MHM, van de
Sandt EJAX, Ottens M: Multidimensional fractionation and
characterization of crude protein mixtures: toward
establishment of a database of protein purification process
development parameters. Biotechnol Bioeng 2012, 109:3070-
3083.

52. Nfor BK, Ahamed T, van Dedem GWK, Verhaert PDEM, van der
Wielen LAM, Eppink MHM, van de Sandt EJAX, Ottens M: Model-
based rational methodology for protein purification process
synthesis. Chem Eng Sci 2013, 89:185-195.

53. Chollangi S, Parker R, Singh N, Li Y, Borys M, Li Z: Development
of robust antibody purification by optimizing protein-A
chromatography in combination with precipitation
methodologies. Biotechnol Bioeng 2015, 112:2292-2304.

54. Geuijen KPM, van Wijk-Basten DEJW, Egging DF,
Schasfoort RBM, Eppink MH: Rapid buffer and ligand screening
for affinity chromatography by multiplexed surface plasmon
resonance imaging. Biotechnol J 2017 http://dx.doi.org/10.1002/
biot.201700154.

55. Thomson AS, Mai S, Byrne MP: A novel approach to
characterize host cell proteins associated with therapeutic
monoclonal antibodies. Biotechnol Bioeng 2017, 114:
1208-1214.
www.sciencedirect.com

http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0405
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0405
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0410
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0410
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0410
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0410
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0425
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0425
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0425
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0425
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0430
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0430
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0430
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0435
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0435
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0435
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0435
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0440
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0440
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0440
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0440
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0445
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0445
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0445
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0445
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0450
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0450
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0450
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0450
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0450
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0460
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0460
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0460
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0460
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0460
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0470
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0470
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0470
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0470
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0475
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0475
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0475
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0475
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0475
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0480
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0480
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0485
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0485
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0485
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0485
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0485
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0490
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0490
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0490
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0490
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0495
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0495
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0495
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0500
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0500
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0500
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0500
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0505
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0505
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0505
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0505
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0505
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0510
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0510
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0510
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0510
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0515
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0515
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0515
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0520
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0520
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0520
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0520
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0520
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0525
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0525
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0525
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0525
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0525
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0530
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0530
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0530
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0530
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0530
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0530
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0530
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0535
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0535
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0535
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0535
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0540
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0540
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0540
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0540
http://dx.doi.org/10.1002/biot.201700154
http://dx.doi.org/10.1002/biot.201700154
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0550
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0550
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0550
http://refhub.elsevier.com/S0958-1669(17)30197-0/sbref0550

	Applications of proteomic methods for CHO host cell protein characterization in biopharmaceutical manufacturing
	Introduction
	Upstream
	Downstream
	Drug substance and drug product
	Strategies for difficult-to-remove HCPs
	Conclusions
	References and recommended reading
	Acknowledgements


